4-Pentynoic acid succinimidyl ester is a biomedicine product extensively utilized in the pharmaceutical industry. It acts as a pivotal reagent facilitating the derivatization of diverse drugs and molecules. This compound has the ability to form stable amide bonds and is an important tool in drug discovery and bioconjugation research. The remarkable versatility of this compound fuels the advancement of targeted therapeutic approaches, diagnostic instruments, and drug conveyance mechanisms.
Catalog Number | Size | Price | Quantity |
---|---|---|---|
BADC-00435 | -- | $-- |
4-pentynoic acid succinimidyl ester, a versatile chemical reagent, plays a pivotal role in bioconjugation techniques. Here are four key applications described with a high degree of perplexity and burstiness:
Protein Labeling: Widely utilized in protein labeling studies, 4-pentynoic acid succinimidyl ester engages with primary amines on proteins, enabling the attachment of various probes or tags such as fluorophores and biotin. This process facilitates the visualization, detection, and purification of specific proteins in intricate biological samples, unlocking new possibilities for molecular research.
Antibody-Drug Conjugates: In the innovative realm of antibody-drug conjugates (ADCs), 4-pentynoic acid succinimidyl ester serves as a vital connector between cytotoxic drugs and antibodies. This targeted therapy strategy enhances the precise delivery of drugs to cancer cells, minimizing the impact on healthy tissues. The resulting conjugates not only boost the effectiveness of cancer treatments but also mitigate undesirable side effects, heralding a paradigm shift in oncological care.
Surface Functionalization: Employed in the realm of biosensors and biochip applications, 4-pentynoic acid succinimidyl ester plays a key role in surface functionalization. By anchoring biomolecules to surfaces, it facilitates the creation of platforms for detecting specific analytes or conducting cell adhesion studies. This enhancement bolsters the sensitivity and specificity of biosensors and other analytical devices, paving the way for cutting-edge advancements in biotechnology.
Click Chemistry: Serving as a linchpin in click chemistry reactions, particularly the copper-catalyzed alkyne-azide cycloaddition (CuAAC), 4-pentynoic acid succinimidyl ester is a crucial component in diverse applications. Through its interaction with azide-functionalized molecules, it catalyzes the formation of stable triazole linkages, revolutionizing drug discovery, materials science, and chemical biology. This technique stands at the forefront of multidisciplinary research, driving innovation and discovery across various scientific domains.
Customer Support
Providing excellent 24/7 customer service and support
Project Management
Offering 100% high-quality services at all stages
Quality Assurance
Ensuring the quality and reliability of products or services
Global Delivery
Ensuring timely delivery of products worldwide
BOC Sciences offers comprehensive services for ADC manufacturing, including antibody modification, linker chemistry, payload conjugation, and formulation development. In particular, our payload-linker customization service offers a convenient and fast raw material channel for many ADC researchers.
BOC Sciences provides one-stop site-specific conjugation services for amino acids, glycans, unnatural amino acids, and short peptide tags. In addition, cysteine conjugation, lysine conjugation, enzymatic conjugation, thio-engineered antibody can also be obtained quickly.
BOC Sciences offers a full range of linkers, including peptide linkers, PEG linkers, click chemistry, PROTAC linkers, non-cleavable linkers, etc. We also provide custom development services for chemically labile linkers and enzymatically cleavable linkers.