endo-BCN-PEG4-PFP ester - CAS 1421932-52-6

endo-BCN-PEG4-PFP ester - CAS 1421932-52-6 Catalog number: BADC-00414

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Category
ADCs Linker
Product Name
endo-BCN-PEG4-PFP ester
CAS
1421932-52-6
Catalog Number
BADC-00414
Molecular Formula
C28H34F5NO8
Molecular Weight
607.57
Purity
≥98%
endo-BCN-PEG4-PFP ester

Ordering Information

Catalog Number Size Price Quantity
BADC-00414 -- $-- Inquiry
Synonyms
perfluorophenyl 1-(bicyclo[6.1.0]non-4-yn-9-yl)-3-oxo-2,7,10,13,16-pentaoxa-4-azanonadecan-19-oate;
Canonical SMILES
C1CC2C(C2COC(=O)NCCOCCOCCOCCOCCC(=O)OC3=C(C(=C(C(=C3F)F)F)F)F)CCC#C1
InChI
InChI=1S/C28H34F5NO8/c29-22-23(30)25(32)27(26(33)24(22)31)42-21(35)7-9-37-11-13-39-15-16-40-14-12-38-10-8-34-28(36)41-17-20-18-5-3-1-2-4-6-19(18)20/h18-20H,3-17H2,(H,34,36)
InChIKey
SWBZFLVGZRZGCI-UHFFFAOYSA-N
Solubility
DMSO, DCM, DMF
Appearance
Soild powder
Shipping
Room temperature
Storage
Please store the product under the recommended conditions in the Certificate of Analysis.

The specialized chemical reagent endo-BCN-PEG4-PFP ester is a linchpin in various scientific applications, particularly in the sphere of bioconjugation. Here we present four key applications of this compound:

Bioconjugation: Serving as the bedrock of bioconjugation, endo-BCN-PEG4-PFP ester facilitates the binding of biological molecules such as proteins or antibodies to other entities via its reactive ester group. This foundational process is imperative for constructing targeted drug delivery systems and diagnostic tools. The incorporation of the PEG4 spacer imparts flexibility and diminishes steric hindrance, ensuring efficacious conjugation and heightened functionality in the resultant bioconjugates.

Drug Delivery: In the realm of cutting-edge drug delivery systems, this compound emerges as a pivotal component where precise targeting of therapeutic agents reigns supreme. The BCN (bicyclo[6.1.0]nonyne) group enables click chemistry with azide-containing molecules, facilitating the coupling of drugs to targeting moieties. This strategic linkage enhances the efficiency and specificity of drug delivery to affected tissues, thereby elevating therapeutic efficacy with pinpoint accuracy.

Surface Functionalization: The utility of endo-BCN-PEG4-PFP ester extends to the functionalization of surfaces such as nanoparticles or biosensors with biological ligands. By modulating surface properties, this technique propels the development of sophisticated biosensing devices, enabling sensitive and selective detection of biomolecules.

Proteomics and Glycomics: In the realms of proteomics and glycomics, endo-BCN-PEG4-PFP ester emerges as an invaluable tool for labeling and capturing specific biomolecules for in-depth analysis. This capability empowers researchers to delve into the structures and interactions of proteins and glycans within intricate biological systems.

1. α-Imino Esters in Organic Synthesis: Recent Advances
Bagher Eftekhari-Sis, Maryam Zirak Chem Rev . 2017 Jun 28;117(12):8326-8419. doi: 10.1021/acs.chemrev.7b00064.
α-Imino esters are useful precursors for the synthesis of a variety of types of natural and unnatural α-amino acid derivatives, with a wide range of biological activities. Due to the adjacent ester group, α-imino esters are more reactive relative to other types of imines and undergo different kinds of reactions, including organometallics addition, metal catalyzed vinylation and alkynylation, aza-Henry, aza-Morita-Baylis-Hillman, imino-ene, Mannich-type, and cycloaddition reactions, as well as hydrogenation and reduction. This review discusses the mechanism, scope, and applications of the reactions of α-imino esters and related compounds in organic synthesis, covering the literature from the last 12 years.
2. [Esters and stereoisomers]
V Nigrovic, C Diefenbach, H Mellinghoff Anaesthesist . 1997 Apr;46(4):282-6. doi: 10.1007/s001010050402.
This review discusses concepts of isomers, stereoisomers, chirality, and enantiomers as applied to drugs used in anaesthesia. The inhalational anaesthetics enflurane and isoflurane are examples of stereoisomers. A chiral centre is formed when a carbon or quaternary nitrogen atom is connected to four different atoms. A molecule with one chiral centre is then present in one of two possible configurations termed enantiomers. A racemate is a mixture of both enantiomers in equal proportions. Many of the drugs used in anaesthesia are racemic mixtures (the inhalation anaesthetics, local anaesthetics, ketamine, and others). The shape of the atracurium molecule is comparable to that of a dumb-bell:the two isoquinoline groups representing the two bulky ends connected by an aliphatic chain. In each isoquinoline group there are two chiral centres, one formed by a carbon and the other by a quaternary nitrogen atom. From a geometric point of view, the connections from the carbon atom to a substituted benzene ring and from the quaternary nitrogen to the aliphatic chain may point in the same direction (cis configuration) or in opposite directions (trans configuration). The two isoquinoline groups in atracurium are paired in three geometric configurations: cis-cis, trans-trans, or cis-trans. However, the two chiral centres allow each isoquinoline group to exist in one of four stereoisometric configurations. In the symmetrical atracurium molecule, the number of possible stereoisomers is limited to ten. Among these, 1 R-cis, 1'R-cis atracurium was isolated and its pharmacologic properties studied. This isomer, named cis-atracurium, offers clinical advantages over the atracurium mixture, principally due to the lack of histamine-releasing propensity and the higher neuromuscular blocking potency. The ester groups appear in one of two steric configurations true and reverse esters. In the true esters, oxygen is positioned between the nitrogen atom and the carbonyl group, while in the reverse esters in its positioned on the other side of the carbonyl group. True esters, suxamethonium and mivacurium, are hydrolysed by the enzyme plasma cholinesterase (butyrylcholinesterase), albeit at different rates. The more rapid degradation of suxamethonium is responsible for its fast onset and short duration of action in comparison with mivacurium. The reverse esters, atracurium, cisatracurium, and remifentanil, are hydrolysed by nonspecific esterases in plasma (carboxyesterases). Remifentanil is hydrolysed rapidly; the degradation leads to its inactivation and short duration of action. Cis-atracurium is preferentially degraded and inactivated by a process known as Hofmann elimination. In a second step, one of the degradation products, the monoester acrylate, is hydrolysed by a nonspecific esterase.
3. Fast-Acting Antibacterial, Self-Deactivating Polyionene Esters
Christian Krumm, Lena Benski, Joerg C Tiller, Manfred Köller, Franziska Oberhaus, Jens Wilken, Sylvia Trump ACS Appl Mater Interfaces . 2020 May 13;12(19):21201-21209. doi: 10.1021/acsami.9b19313.
Biocidal compounds that quickly kill bacterial cells and are then deactivated in the surrounding without causing environmental problems are of great current interest. Here, we present new biodegradable antibacterial polymers based on polyionenes with inserted ester functions (PBI esters). The polymers are prepared by polycondensation reaction of 1,4-dibromobutene and different tertiary diaminodiesters. The resulting PBI esters are antibacterially active against a wide range of bacterial strains and were found to quickly kill these cells within 1 to 10 min. Because of hydrolysis of the ester groups, the PBI esters are degraded and deactivated in aqueous media. The degradation rate depends on the backbone structure and the pH. The structure of the polymers also controls the deactivation mechanism. While the more hydrophilic polymers require hydrolyses of only 19 to 30% of the ester groups to become practically inactive, the more hydrophobic PBI esters require up to 85% hydrolysis to achieve the same result. Thus, depending on the environmental conditions and the chemical nature, the PBI esters can be active for only 20 min or for at least one week.
The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Why Choose BOC Sciences?

Customer Support

Providing excellent 24/7 customer service and support

Project Management

Offering 100% high-quality services at all stages

Quality Assurance

Ensuring the quality and reliability of products or services

Global Delivery

Ensuring timely delivery of products worldwide

Questions & Comments
Verification code
Send Inquiry
Verification code
Resources & Supports
Inquiry Basket